

ULDB Demonstration Program: Balloon

Henry M. Cathey, Jr.

Physical Science Laboratory/NMSU
Code 820.0 NASA Wallops Flight Facility
Wallops Island, VA 23337
Henry.M.Cathey.1@gsfc.nasa.gov 757/824-1355

Balloon Design Requirements

- [™]Duration up to 100 days
- Global flight capability
- Total suspended weight to 1600 kg
- Minimum float altitude of 33.5 km

ULDB Balloon Shape

Proposed design - Pumpkin Shape

- Volume 731,200 m²

- Number of gores 268

Gore width1.5 m (maximum)

Inflated dimensions Height 78.6 m (height)

128.2 m (diameter)

- Surface area 40,800 m²

- Gore length 169 m

- Weight 2,800 kg

• Above design based on worst case environments, a/e=0.3, and maximum material weight

Material characterization to be completed

Spherical vs. Pumpkin Design

Fig.1- Pumpkin shape vs. volume equivalent sphere.

Balloon Schematic

Balloon Seams, Load Members, and Fittings

• [™]Seams will be bi-tape seams

- Testing of existing seams has shown 100% of base material strength
- Fabrication speed important

Load member

- Desire for very stiff tendon with high strength
- Included in tape or as separate fiber bundle
- Three candidate materials Kevlar, PBO and Spectra (Dynema)

• Fittings

- Plate with circular clamp ring
- Wedged load line termination (baselined)
- Load attachment similar to current design

Balloon Inflation and Destruct

• "Inflation

- Very similar to current Zero-Pressure Balloons
- He diffuser into inflation tube

Destruct

- Two independent methods
- Valve on apex of balloon
- Rip panel on balloon shell

Performance

- "Gross inflation limited to 5,000 kg
- Predicted day night variations
 - Assumes worst case environments
 - Night altitude 35,000 m Day altitude 35,300 m
 - Night superpressure 20 Pa
 Day superpressure 195 Pa

Leakage

 Measured leak rate of fabric and mylar film composite (with no polyethylene layer) predicts no requirement for use of ballast over 100 days

Vehicle Development Plan

- Balloon Design and Analysis at WFF
- Balloon Fabrication Under Contract
- Implementation of a 5 Phase Plan
- Ground Testing
- Flight Testing

Vehicle Development Contract

• "5 Phase Plan Establishes

- Partners
- Materials
- Fabrication techniques
- Production equipment
- Procedures/QC
- Mechanism for purchasing all flight balloons
- RFP issued 5/22/98
- Phase I award 7/6/98
- Phase II award 10/30/98

Vehicle Technology Partners

NASA

Leads the team
Project management
Defines the requirements
Materials development and specification
Overall mission specification
Analysis

PSL

Balloon mission and operations Overall balloon design and specification

Fabricator Team

Detailed balloon design
Material production
Balloon fabrication
Process engineering and development
Process machinery design and development
Specification development

Phase Development Plan

- Phase I (Prototype Demonstration)
 - Selection of teaming partner
- Phase II (Technology Demonstration)
 - Teaming of NASA, PSL, and the Fabricator Team
 - Start of design and development of automated material and/or balloon fabrication machinery
 - Scale up of flight structure
- Phase III (Production Demonstration)
 - Automated material and/or balloon fabrication machinery
- Phase IV (Performance Demonstration)
 - Scale up of flight structure
 - Performance of material and balloon design for extended flight
- Phase V (Demo 2000)

Technology and Vehicle Implementation

Test Flights, Balloons by Phase

		Prototype		
Phase	Balloon Size	Testing Complete	Launch Location	Duration
Phase I (Prototype Construction)	3 m diameter spherical balloon	September 18, 1998	Wallops Island	Ground Test
	16.5 m diameter spherical balloon	October 15, 1998	Ft. Sumner	To Float Only
Phase II (Technology Demonstration)	3 m diameter pumpkin balloon	December 31, 1998	Wallops Island	Ground Test
	60,000 m3 volume (estimated)	March 1, 1999	Ft. Sumner	3 - 6 hours
Phase III (Production Demonstration)	60,000 m3 volume (estimated)	August 25, 1999	Lynn Lake, Canada	0.5 to 3 days
Phase IV (Performance Demonstration)	600,000 m3 volume (estimated)	January 31, 2000	Alice Springs, Australia	10 to 20 days
Phase V (Demo 2000)	600,000 m3 volume (estimated)	January 31, 2001	Christchurch, NZ	~100 days

Hangar & Flight Tests

• "3 m Diameter Hangar Balloon

- Material Design
- Seam Design
- End Fitting Design
- Fabrication Technology
- Structural Integrity
- Performance

• 16.5 m Diameter Flight Balloon

- Used, in part, to determine structure strength, ability to get to float, and identify any flight concerns
- Payload radio sondes with an internal pressure gauge
- Ascent to burst